Perkin Communications

The Binary Reagent PhSeSePh-CuOTf: a Useful Phenylselenylating Agent

Nobuhide Miyachi, Hisao Satoh and Masakatsu Shibasaki *
Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan

The binary reagent $\mathrm{PhSeSePh}-\mathrm{CuOTf}$ has been found to be useful for the conversion of alkynyltrimethylsilanes into 1 -phenylselenoalk-1-ynes as well as for phenylselenolactonization and phenylselenoetherification.

Recently we reported that the binary reagent $\mathrm{PhSSPh}-\mathrm{CuOTf}^{1}$ was a powerful source of PhS^{+}, making possible the direct conversion of alkynyltrimethylsilanes into alkynyl phenyl sulphides. ${ }^{2}$ Here we report that a further binary reagent, $\mathrm{PhSeSePh}-\mathrm{CuOTf}$, is useful both for the conversion of alkynyltrimethylsilanes into 1-phenylselenoalk-1-ynes as well as for phenylselenolactonization and phenylselenoetherification. The reactivity of these binary reagents is different from those of representative organoselenium reagents such as $\mathrm{PhSeCl}, \mathrm{PhSeBr}$ and PhSeOTf .

1-Phenylselenoalk-1-ynes, prepared by generating acetylide anions with butyllithium followed by treatment with benzeneselenenyl halide, ${ }^{3.4}$ are converted into (Z)-1-phenylselenoalk1 -enes in a highly stereoselective manner. ${ }^{5}$ We thought that the direct transformation of alkynyltrimethylsilanes, which are frequently utilized as general synthetic intermediates in organic synthesis, to 1 -phenylselenoalk-1-ynes would be effected by the binary reagent $\mathrm{PhSeSePh}-\mathrm{CuOTf}$. 1-Phenylselenoalk-1ynes are too reactive under oxidation conditions to be utilized as general synthetic intermediates. After several attempts, it was found that treatment of the alkynyltrimethylsilane 1 with PhSeSePh (1.2 equiv.), (CuOTf) ${ }_{2}$-benzene (1.2 equiv.) and CaCO_{3} (2 mol equiv.) in refluxing dioxane for 2.5 h afforded the desired 1-phenylselenoalk-1-yne 2 in 89% yield. Likewise, the alkynyltrimethylsilanes 3^{6} and 5^{7} were converted into the corresponding 1 -phenylselenoalk-1-ynes 4 and 6 in 91 and 87% yields, respectively. Furthermore, the alkynyltrimethylsilane 7^{8} was transformed into 8 in 92% yield.

The binary reagent $\mathrm{PhSeSePh}-\mathrm{CuOTf}(0.33 \mathrm{mmol})$ was also effective in converting 1-trimethylsilylprop-1-yne $9(0.99 \mathrm{mmol})$ into 1-phenylselenoprop-1-yne 10 in a sealed tube (68% yield based on PhSeSePh), which is a lithioprop-2-ynyl alcohol equivalent. ${ }^{9}$

The presence of the two reagents was found to be essential for the above transformations, the active species not being PhSeOTf as evidenced by recovery of PhSeSePh after treatment with (CuOTf) $)_{2}$-benzene (1 equiv.) in refluxing dioxane for 4 h . Attempted detection of the complex by recording the ${ }^{1} \mathrm{H}$ NMR spectra of a mixture of PhSeSePh and (CuOTf) $)_{2}$-benzene in [${ }^{2} \mathrm{H}_{8}$] dioxane at various temperatures however, gave negative results.
The advantage of the binary reagent $\mathrm{PhSeSe} \mathrm{Ph}-\mathrm{CuOTf}$ as a source of PhSe^{+}for the conversion of alkynyltrimethylsilanes into 1 -phenylselenoalk-1-ynes was demonstrated by recovery of unchanged 1 after it had been treated with either $\mathrm{PhSeCl}-$ CaCO_{3} or $\mathrm{PhSeBr}-\mathrm{CaCO}_{3}$ under the reaction conditions described above. However, use of $\mathrm{PhSeOTf}^{10}$ (1.2 equiv.) yielded $2(12 \%)$ and recovery of $1(47 \%)$, whilst use of an excess of reagent (1.8 equiv.), resulted in the formation of 11 (12\%).
These binary reagents have also been found to be useful for phenylselenolactonization. ${ }^{10,11}$ Thus, treatment of the acid 12

1; $\mathrm{R}^{1}=\mathrm{SiMe}_{3}$
2; $\mathrm{R}^{1}=\mathrm{SePh}$

5; $\mathrm{R}^{3}=\mathrm{SiMe}_{3}$ 6; $\mathrm{R}^{3}=\mathrm{SePh}$
$\mathrm{CH}_{3}=\mathrm{R}^{5}$
9; $\mathrm{R}^{5}=\mathrm{SiMe}_{3}$
10; $\mathrm{R}^{5}=\mathrm{SePh}$
with PhSeSePh (1.2 equiv.), (CuOTf$)_{2}$-benzene (1.2 equiv.) and CaCO_{3} (2 mol equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $30^{\circ} \mathrm{C}$ for 7.5 h afforded the lactone $13(100 \%)$. Likewise, the acids $14,16,19$ and 21 were converted into the corresponding lactones 15, 17, 20 and 22 in $100,87,88$ and 37% yields, respectively. In the lactonization of 16 , the six-membered lactone 18 was also formed (5%). Interestingly, the use of dioxane as a solvent for the lactonization of 16 afforded $17(40 \%)$ together with 18 (17%). In order to understand the above results, the following experiment was carried out. Treatment of a mixture of 17 and 18 ($9.7: 1 ; 90 \mathrm{mg}, 0.32 \mathrm{mmol})$ with $\mathrm{PhSeSePh}(0.39 \mathrm{mmol})$, (CuOTf) $)_{2}$-benzene $(0.19 \mathrm{mmol})$ and $\mathrm{CaCO}_{3}(0.64 \mathrm{mmol})$ in dioxane at $30^{\circ} \mathrm{C}$ for 24 h gave a mixture of 17 and 18 (2.3:1, 45 mg), indicating that, to a certain extent, the rearrangement of $\mathbf{1 7}$ to $\mathbf{1 8}$ occurred in dioxane solvent. Unfortunately, these binary reagents failed to give a satisfactory result in the synthesis of macrolides. Thus, exposure of the acid 23 to $\mathrm{PhSeSePh},(\mathrm{CuOTf})_{2}$-benzene and BaCO_{3} in refluxing DME provided 24 in only 6% yield together with $25(4 \%)$.
Finally, we have observed that the binary reagent is also useful for phenylselenoetherification. ${ }^{12}$ Thus, homogeraniol 26 was transformed into the cyclic ether 27 in (56%) by treatment

Scheme 1 Reagents and conditions: i, PhSeSePh (1.2 equiv.), CuOTf (1.2 equiv.), CaCO_{3} (2.0 mol equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30^{\circ} \mathrm{C}$; ii, $\mathrm{PhSeSePh}(1.2$ equiv.), CuOTf (1.2 equiv.), BaCO_{3} (2.0 mol equiv.), DME, reflux; iii, PhSeSePh (1.2 equiv.), CuOTf (1.2 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30^{\circ} \mathrm{C}$.
with PhSeSePh (1.2 equiv.), (CuOTf) $)_{2}$-benzene (1.2 equiv.) and CaCO_{3} (2 mol equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $30^{\circ} \mathrm{C}$ for 2 h . Interestingly, exposure of 26 to PhSeSePh (1.2 equiv.) and (CuOTf$)_{2}-$ benzene (1.2 equiv.) in the absence of a base such as $\mathrm{CaCO}_{3}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ solvent, $30{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$) afforded the bicyclic ether $28(41 \%)$. These results are in accord with those effected by PhSeOTf. ${ }^{12}$

Experimental

Typical Procedure: 5-Phenyl-1-phenylselenopent-1-yne 2.-To a stirred solution of $1(255 \mathrm{mg}, 1.18 \mathrm{mmol})$ in dixoane $(3.4 \mathrm{ml})$ was added calcium carbonate ($236 \mathrm{mg}, 2.36 \mathrm{mmol}$), diphenyl
diselenide ($442 \mathrm{mg}, 1.41 \mathrm{mmol}$) and (CuOTf) $)_{2}$-benzene (356 $\mathrm{mg}, 0.71 \mathrm{mmol}$) at room temperature. The mixture was refluxed and stirred for 2.5 h after which it was quenched with phosphate buffer ($\mathrm{pH} 7 ; 30 \mathrm{ml}$), and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (hexane) to give $2(315 \mathrm{mg}, 89 \%$) as a colourless oil; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3080,3040,2950,2870,1580$, 1500,1480 and $1440 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.70-2.00(2 \mathrm{H}$, $\mathrm{m}), 2.47(2 \mathrm{H}, \mathrm{t}, J 7.0), * 2.77(2 \mathrm{H}, \mathrm{t}, J 7.5)$ and $6.90-7.60(10 \mathrm{H}$, $\mathrm{m}) ; m / z 300\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 300.0430 . \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Se}$ requires $M, 300.0428$).

8-Phenylseleno-2-oxabicyclo[3.3.0]octan-3-one 13.-To a stirred solution of $(\mathrm{CuOTf})_{2}$-benzene $(101 \mathrm{mg}, 0.20 \mathrm{mmol})$ in dioxane (1.0 ml) was added diphenyl diselenide ($126 \mathrm{mg}, 0.40$ mmol), calcium carbonate $(67 \mathrm{mg}, 0.67 \mathrm{mmol})$ and the carboxylic acid 12 ($42 \mathrm{mg}, 0.34 \mathrm{mmol}$) at room temperature. The mixture was stirred at the same temperature for 7.5 h , quenched with phosphate buffer ($\mathrm{pH} 7 ; 9 \mathrm{ml}$), and extracted with AcOEt. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. The residue was purified by silica gel column chromatography (benzene) to give $13\left(94 \mathrm{mg}, 100 \%\right.$) as a colourless oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3060$, $2970,2880,1775,1580,1480,1440,1415,1350,1320,1300,1160$ and $1000 ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.50-1.60(1 \mathrm{H}, \mathrm{m}), 1.80-1.90(1$ $\mathrm{H}, \mathrm{m}), 2.10-2.30(2 \mathrm{H}, \mathrm{m}), 2.34(1 \mathrm{H}, \mathrm{dd}, J 18.3,2.4), 2.82(1 \mathrm{H}, \mathrm{dd}$, $J 18.3,9.9), 3.00-3.20(1 \mathrm{H}, \mathrm{m}), 3.80-3.90(1 \mathrm{H}, \mathrm{m}), 4.91(1 \mathrm{H}, \mathrm{d}, J$ $6.2), 7.20-7.40(3 \mathrm{H}, \mathrm{m})$ and $7.50-7.60(2 \mathrm{H}, \mathrm{m}) ; m / z 282\left(\mathrm{M}^{+}\right)$ (Found: $\mathrm{M}^{+}, 282.0157 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Se}$ requires $M, 282.0158$).

Acknowledgements

Financial support of this project was provided by Terumo Life Science Foundation.

References

1 R. G. Salomon and J. K. Kochi, J. Am. Chem. Soc., 1973, 95, 1889; R. G. Salomon, K. Folting, W. E. Streib and J. K. Kochi, J. Am. Chem. Soc., 1974, 96, 1145; T. Cohen, D. Kuhn and J. R. Falck, J. Am. Chem. Soc., 1975, 97, 4749; T. Cohen, A. J. Mura, Jr., D. W. Shull, E. R. Fogel, R. J. Ruffner and J. R. Falck, J. Org. Chem., 1976, 41, 3218; J. Huang and J. Meinwald, J. Am. Chem. Soc., 1981, 103, 861; S. Masamune, M. Hirama, S. Mori, S. A. Ali and D. S. Garrey, J. Am. Chem. Soc., 1981, 103, 1568; S. R. Raychandhuri, S. Ghash and R. G. Salomon, J. Am Chem. Soc., 1982, 104, 6841.
2 N. Miyachi and M. Shibasaki, J. Org. Chem., 1990, 55, 1975.
3 N. Petragrani, R. Rodrigues and J. V. Comasseto, J. Organomet. Chem., 1976, 114, 281.
4 S. Tomoda, Y. Takeuchi and Y. Nomura, Chem. Lett., 1982, 253.
5 S. Raucher, M. R. Hansen and M. A. Colter, J. Org. Chem., 1978, 43, 4885.

6 M. Shibasaki, Y. Ishida, G. Iwasaki and T. Iimori, J. Org. Chem., 1987, 52, 3488.
7 I. Iimori and M. Shibasaki, Tetrahedron Lett., 1986, 27, 2149.
8 A. M. Krubiner, N. Gottfried and E. P. Oliveto, J. Org. Chem., 1969, 34, 3502.
9 H. J. Reich, S. K. Shah, P. M. Gold and R. E. Olson, J. Am. Chem. Soc., 1981, 103, 3112.
10 S. Murata and T. Suzuki, Chem. Lett., 1987, 849.
11 K. C. Nicolaou, S. P. Seitz, W. J. Sipio and J. F. Blount, J. Am. Chem. Soc., 1979, 101, 3884; D. L. J. Clive, C. G. Russell, G. Chittattu and A. Singh, Tetrahedron, 1980, 36, 1399; D. Goldsmith, D. Liotta, C. Lee and G. Zima, Tetrahedron Lett., 1979, 4801; K. C. Nicolaou, D. A. Claremon, W. E. Barnette and S. P. Seitz, J. Am. Chem. Soc., 1979, 101, 3704; K. C. Nicolaou, N. A. Petasis and D. A. Claremon, Tetrahedron, 1985, 41, 4835.
12 S. Murata and T. Suzuki, Tetrahedron Lett., 1990, 31, 6535, and references cited therein.

